Efficient Decentralized Coordination of Large-scale Plug-in Electric Vehicle Charging

S. Zou¹, Z. Ma³, I. Hiskens¹

¹University of Michigan ³Beijing Institute of Technology

ESIF Workshop on Frontiers in Distributed Optimization and Control January 27, 2016

Motivation

- The electrical power drawn by plug-in electric vehicle (PEV) chargers will (eventually?) begin to impact the grid.
- At the system-wide level, control objectives tend to focus on filling the overnight valley in background demand.
- At the distribution level, proposed control strategies address:
 - Transformer overloads
 - Loss minimization
 - Voltage degradation
 - Tap-change minimization
- Few control strategies also take into account the effects of charging on battery health.

Goals

- A decentralized approach to scheduling PEV charging that considers trade-offs between:
 - Energy price
 - Battery degradation
 - Distribution network effects
- The resulting collection of PEV charging strategies should be efficient (socially optimal).
- Convergence should only require a few iterations.

Formulation

- PEV population: $\mathcal{N} \equiv \{1, ..., N\}$.
- Horizon: $T \equiv \{0, ..., T 1\}.$
- Admissible charging strategies:

$$u_{nt} \ge 0, \quad t \in \mathcal{T}$$

 $\|\boldsymbol{u}_n\|_1 \equiv \sum_{t \in \mathcal{T}} u_{nt} \le \Gamma_n$

where Γ_n is the energy capacity of the *n*-th PEV.

• The set of admissible charging controls is denoted U_n .

Demand charge

- Distribution-level impacts are largely a consequence of coincident high charger power demand u_{nt} .
- Undesirable effects can be minimized by encouraging lower power levels.

$$Cost_{demand,nt} = g_{demand,nt}(u_{nt})$$

where $g_{demand,nt}(\cdot)$ is a strictly increasing function.

Battery degradation cost

Experimentation with ${\rm LiFePO_4}$ lithium-ion batteries gave an (empirical) degradation model:

$$\mathfrak{d}_{cell}(I, V) = \beta_1 + \beta_2 I + \beta_3 V + \beta_4 I^2 + \beta_5 V^2 + \beta_6 IV + \beta_7 V^3$$

relating energy capacity loss per second (in $Amp \times Hour \times Sec^{-1}$) to charging current I and voltage V.

Degradation cost:

$$\mathfrak{g}_{cell}(I,V) = P_{cell} \Delta T V \mathfrak{d}_{cell}(I,V)$$

where P_{cell} is the price (\$/Wh) of battery cell capacity.

- Over the useable state of charge (SoC) range, $V \approx V_{nom}$.
- Battery degradation cost can be expressed as:

$$Cost_{degrad,nt} = g_{cell,n}(u_{nt}) = M_n \mathfrak{g}_{cell}(\frac{10^3 u_{nt}}{M_n V_{nom}}, V_{nom})$$
$$= a_n u_{nt}^2 + b_n u_{nt} + c_n$$

Centralized formulation

System cost:

$$J(\boldsymbol{u}) \triangleq c\left\{c\left(d_t + u_{nt}\right) + g_{nt}(u_{nt})\right\} - \left\{h_n\left(\|\boldsymbol{u}_n\|_1\right)\right\}$$

where:

- $\mathbf{u}_n \in \mathcal{U}_n$ for all $n \in \mathcal{N}$.
- $c(\cdot)$ gives the generation cost with respect to the total demand $d_t + \sum_{n \in \mathcal{N}} u_{nt}$, and d_t denotes the aggregate inelastic base demand at time t.
- $g_{nt}(u_{nt}) = g_{demand,nt}(u_{nt}) + g_{cell,n}(u_{nt})$ captures the demand charge and battery degradation cost of the n-th PEV.
- $h_n(\|\mathbf{u}_n\|_1)$ denotes the benefit function of the *n*-th PEV with respect to the total energy delivered over the charging horizon, with:

$$h_n(\|\boldsymbol{u}_n\|_1) = -\delta_n(\|\boldsymbol{u}_n\|_1 - \Gamma_n)^2$$

Assumptions

- (A1) The generation cost function $c(\cdot)$ is monotonically increasing, strictly convex and differentiable.
- (A2) The combined demand charge and battery degradation cost $g_{nt}(\cdot)$, for all $n \in \mathcal{N}$, $t \in \mathcal{T}$, is monotonically increasing, strictly convex and differentiable.
- (A3) The benefit function $h_n(\omega)$ is differentiable, increasing and strictly concave on $0 \le \omega \le \Gamma_n$.

8 / 19

Example

Example - varying P_{cell}

Example - varying terminal penalty, δ_n

Decentralized charging coordination

- (S1) Each PEV autonomously determines its optimal charging strategy with respect to a given electricity price profile $\mathbf{p} \equiv (p_t, t \in \mathcal{T})$. This optimal strategy takes into account the trade-off between the electricity cost and local (demand and battery degradation) costs over the entire charging horizon.
- (S2) The electricity price profile p is updated to reflect the latest charging strategies determined by the PEV population in (S1).
- (S3) Steps (S1) and (S2) are repeated until the change in the price profile at (S2) is negligible.

Using an appropriate individual cost function and price update mechanism, (S1)-(S3) is convergent and achieves the socially optimal (centralized) solution.

Individual cost function

$$J_n(\mathbf{u}_n; \mathbf{p})$$
 $p_t u_{nt} + g_{nt}(u_{nt}) - h_n \quad u_{nt}$
 $t \in \mathcal{T}$

- Cost is composed of energy cost, local (demand and battery degradation) cost, and the benefit derived from the total delivered energy.
- The optimal charging strategy of the *n*-th PEV, with respect to **p**:

$$\mathbf{u}_n^*(\mathbf{p}) = \operatorname*{argmin}_{\mathbf{u}_n \in \mathcal{U}_n} J_n(\mathbf{u}_n; \mathbf{p})$$

• This optimal response has the form:

$$u_{nt}(\boldsymbol{p}, A_n) = \max \left\{ 0, [g'_{nt}]^{-1} (A_n - p_t) \right\}, \quad t \in \mathcal{T}$$

for some A_n , where g'_{nt} is the derivative of g_{nt} , and $[g'_{nt}]^{-1}$ denotes the corresponding inverse function.

Price profile update mechanism

Let

$$p_t^+(\boldsymbol{p}) = p_t + \eta \ c \left(d_t + u_{nt}^*(\boldsymbol{p})\right) - p_t \ , \quad t \in \mathcal{T}$$

where $\eta > 0$ is a fixed parameter, and $\boldsymbol{u}_n^*(\boldsymbol{p})$ is the optimal charging strategy for the n-th PEV with respect to p.

• The price update mechanism can be expressed as,

$$\boldsymbol{p}^+(\boldsymbol{p}) = (1 - \eta)\boldsymbol{p} + \eta \mathcal{P}(\boldsymbol{p})$$

 This has the form of the Krasnoselskij iteration, and is therefore guaranteed to converge to a fixed point of $\mathcal{P}(\cdot)$ for any $\eta \in (0,1)$ if $\mathcal{P}(\cdot)$ is non-expansive.

Main results

I emma:

$$\|\mathbf{u}_{n}^{*}(\mathbf{p}) - \mathbf{u}_{n}^{*}(\mathbf{\varrho})\|_{1} \leq 2\nu \|\mathbf{p} - \mathbf{\varrho}\|_{1}$$

where ν is the maximum over the Lipschitz constants of $[g_{nt}]^{-1}(\cdot)$.

Theorem: The decentralized algorithm converges to the efficient (centralized) solution \boldsymbol{u}^{**} . For any $\varepsilon > 0$, convergence $\|\boldsymbol{p} - \boldsymbol{p}^{**}\| \leq \varepsilon$ is guaranteed in no more than $K(\varepsilon)$ iterations.

- $K(\varepsilon)$ involves the price update parameter η , number of vehicles N, time horizon T, Lipschitz constant for $c(\cdot)$ and maximum Lipschitz constant over $[g_{nt}]^{-1}(\cdot)$ (given by ν).
- The proof establishes that

$$\|{m p}^+ - {m \varrho}^+\|_1 < \|{m p} - {m \varrho}\|_1$$

so the price update operator $p^+(p)$ is a contraction map.

Consensus-based solution

- Assume the generation cost $c(\cdot)$ is quadratic.
- The following completely distributed process achieves exactly the same outcome as the earlier iterative strategy.
- (S1) Each PEV autonomously determines its optimal charging strategy $u_n^*(p)$. It then computes its estimate of the updated price:

$$p_{nt}^+(\boldsymbol{p}) = p_t + \eta \ c \ d_t + Nu_{nt}^*(\boldsymbol{p}) - p_t \ , \quad t \in \mathcal{T}$$

(S2) PEVs exchange their price estimates $\boldsymbol{p}_n^+(\boldsymbol{p})$ with neighbours in an average consensus process to obtain the updated price profile:

$$oldsymbol{
ho}^+(oldsymbol{
ho}) = rac{1}{N} \sum_{n \in \mathcal{N}} oldsymbol{
ho}_n^+(oldsymbol{
ho})$$

(S3) Steps (S1) and (S2) are repeated until the change in the price profile at (S2) is negligible.

Illustration - convergence

Evolution of $\|\boldsymbol{p}^{(k)} - \boldsymbol{p}^{**}\|_1$ for various values of the price update parameter η .

• Convergence is guaranteed for $0 < \eta < 1.017$.

Illustration - algorithm updates

Price update parameter $\eta = 1$.

Conclusions

- A price-based decentralized strategy has been developed for coordinating the charging of a large population of PEVs.
- PEVs minimize a cost function that captures the trade-off between:
 - Cost of energy.
 - Costs associated with battery degradation.
 - High charging demand.
- A decentralized iterative scheme converges to the unique efficient collection of charging strategies.
 - Average consensus can be used to completely distribute this process.

This work was supported in part by FORCES (Foundations Of Resilient CybEr-Physical Systems), which receives support from the National Science Foundation (NSF award number CNS-1238962).